Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(4): 472-479, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38518220

RESUMO

Pyrrolidone carboxyl peptidase, commonly known as PYRase, is an exopeptidase that catalytically cleaves an N-terminal pyroglutamic acid from peptides or proteins. The diverse functions of PYRases in bacterial enzymology have prompted the development of various bacterial diagnostic techniques. However, the specific physiological role and activity of this enzyme across the bacterial kingdom remain unclear. Here, we present a functional phenoxy-1,2-dioxetane chemiluminescent probe (PyrCL) that can selectively detect PYRase activity in both Gram-positive and Gram-negative bacteria. The probe activation mechanism is based on the cleavage of a pyroglutamyl substrate, followed by a release of the phenoxy-dioxetane luminophore, which then undergoes efficient chemiexcitation to emit a green photon. Probe PyrCL exhibits an effective turn-on response with superior detection capability in terms of response time and sensitivity compared to existing fluorescence probes. The superior detection sensitivity of the chemiluminescent probe enables us to reveal previously undetected PYRase activity in Streptococcus mutans. Furthermore, it enables the discrimination of Pseudomonas aeruginosa from other Gram-negative bacteria in the tested panel, based on their distinct PYRase activity. We expect that probe PyrCL will have great value for PYRase-based bacteria diagnosis with use in basic research and clinical applications.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Proteínas
2.
J Am Chem Soc ; 146(8): 5263-5273, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38362863

RESUMO

Identification and characterization of bacterial species in clinical and industrial settings necessitate the use of diverse, labor-intensive, and time-consuming protocols as well as the utilization of expensive and high-maintenance equipment. Furthermore, while cutting-edge identification technologies such as mass spectrometry and PCR are highly effective in identifying bacterial pathogens, they fall short in providing additional information for identifying bacteria not present in the databases upon which these methods rely. In response to these challenges, we present a robust and general approach to bacterial identification based on their unique enzymatic activity profiles. This method delivers results within 90 min, utilizing an array of highly sensitive and enzyme-selective chemiluminescent probes. Leveraging our recently developed technology of chemiluminescent luminophores, which emit light under physiological conditions, we have crafted an array of probes designed to rapidly detect various bacterial enzymatic activities. The array includes probes for detecting resistance to the important and large class of ß-lactam antibiotics. The analysis of chemiluminescent fingerprints from a diverse range of prominent bacterial pathogens unveiled distinct enzymatic activity profiles for each strain. The reported universally applicable identification procedure offers a highly sensitive and expeditious means to delineate bacterial enzymatic activity fingerprints. This opens new avenues for characterizing and identifying pathogens in research, clinical, and industrial applications.


Assuntos
Bactérias , Enzimas , Medições Luminescentes , Bactérias/classificação , Enzimas/química
3.
ACS Cent Sci ; 10(1): 28-42, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292606

RESUMO

Chemiluminescence is a fascinating phenomenon that involves the generation of light through chemical reactions. The light emission from adamantyl-phenoxy-1,2-dioxetanes can glow from minutes to hours depending on the specific substituent present on the dioxetane molecule. In order to improve the light emission properties produced by these chemiluminescent luminophores, it is necessary to induce the chemiexcitation rate to a flash mode, wherein the bulk of light is emitted instantly rather than slowly over time. We report the realization of this goal through the incorporation of spirostrain release into the decomposition of 1,2-dioxetane luminophores. DFT computational simulations provided support for the hypothesis that the spiro-cyclobutyl substituent accelerates chemiexcitation as compared to the unstrained adamantyl substituent. Spiro-linking of cyclobutane and oxetane units led to greater than 100-fold and 1000-fold emission enhancement, respectively. This accelerated chemiexcitation rate increases the detection sensitivity for known chemiluminescent probes to the highest signal-to-noise ratio documented to date. A turn-ON probe, containing a spiro-cyclobutyl unit, for detecting the enzyme ß-galactosidase exhibited a limit of detection value that is 125-fold more sensitive than that for the previously described adamantyl analogue. This probe was also able to instantly detect and image ß-gal activity with enhanced sensitivity in E. coli bacterial assays.

4.
Chem Sci ; 14(25): 6953-6962, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389255

RESUMO

Multiplex technology is an important emerging field, in diagnostic sciences, that enables the simultaneous detection of several analytes in a single sample. The light-emission spectrum of a chemiluminescent phenoxy-dioxetane luminophore can be accurately predicted by determining the fluorescence-emission spectrum of its corresponding benzoate species, which is generated during the chemiexcitation process. Based on this observation, we designed a library of chemiluminescent dioxetane luminophores with multicolor emission wavelengths. Two dioxetane luminophores that have different emission spectra, but similar quantum yield properties, were selected from the synthesized library for a duplex analysis. The selected dioxetane luminophores were equipped with two different enzymatic substrates to generate turn-ON chemiluminescent probes. This pair of probes exhibited a promising ability to act as a chemiluminescent duplex system for the simultaneous detection of two different enzymatic activities in a physiological solution. In addition, the pair of probes were also able to simultaneously detect the activities of the two enzymes in a bacterial assay, using a blue filter slit for one enzyme and a red filter slit for the other enzyme. As far as we know, this is the first successful demonstration of a chemiluminescent duplex system composed of two-color phenoxy-1,2-dioxetane luminophores. We believe that the library of dioxetanes presented here will be beneficial for developing chemiluminescence luminophores for multiplex analysis of enzymes and bioanalytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...